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Abstract—Maximal leakage quantifies the leakage of infor-
mation from data X ∈ X due to an observation Y . While
fundamental properties of maximal leakage, such as data pro-
cessing, sub-additivity, and its connection to mutual information,
are well-established, its behavior over Bayesian networks is not
well-understood and existing bounds are primarily limited to
binary X . In this paper, we investigate the behavior of maximal
leakage over Bayesian networks with finite alphabets. Our bounds
on maximal leakage are established by utilizing coupling-based
characterizations which exist for channels satisfying certain
conditions. Furthermore, we provide more general conditions
under which such coupling characterizations hold for |X | = 4.
In the course of our analysis, we also present a new simultane-
ous coupling result on maximal leakage exponents. Finally, we
illustrate the effectiveness of the proposed bounds with some
examples.

I. INTRODUCTION

Characterizing information flow over a Bayesian network is
a fundamental problem in information theory. A key question
in this context is: How much information leakage is incurred
by a processing step about a source X ∈ X as it is processed
over a Bayesian network? Consider a system containing sen-
sitive data X and an adversary interacting with the system to
receive a noisy observation Y . The composite system between
X and Y might be complex and, in many scenarios, can
be effectively modeled by a Bayesian network. An important
quantity useful in quantifying the “leakage” of information
from X to any subset of nodes in the Bayesian network is
maximal leakage.

In this paper, we aim to establish bounds on maximal
leakage over Bayesian networks that utilize both the structural
properties of networks (such as parent node relationships)
and the properties of individual channels comprising the
network. Maximal leakage, introduced by [1], is defined as the
multiplicative increase in the probability of correctly guessing
a possibly randomized function of the sensitive data X , given
an observation Y . Formally, given a joint distribution PX,Y

on finite alphabets X and Y , the maximal leakage from X to
Y is defined as follows:

L(X → Y ) ≜ sup
U−X−Y−Û

log

 P(U = Û)

max
u∈U

P(U = u)

, (1)
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where U − X − Y − Û forms a Markov chain, and U and
Û take values in the same finite, but arbitrary, alphabet set U .
It was shown in [1] that L(X → Y ) in the above definition
reduces to Sibson’s mutual information of order infinity [2],
[3]:

L(X → Y ) = log

∑
y∈Y

max
x∈X :PX(x)>0

PY |X(y|x)

. (2)

Maximal leakage has been applied in various domains, in-
cluding security [4], privacy [5], adaptive data analysis, and
learning theory [6]. Its fundamental properties, such as data
processing, sub-additivity, and relation to mutual information
[1], are well understood. However, despite the basic known
properties for maximal leakage, its behavior in the context of
Bayesian networks remains far from fully understood.

Bayesian networks [7], which represent joint distributions
through directed acyclic graphs, offer a flexible framework for
modeling dependencies among a set of variables. In these net-
works, nodes represent random variables, and edges represent
conditional dependencies. The joint probability distribution of
a set of random variables Y1, . . . , Yn in a Bayesian network
is given by

PY1,...,Yn
=

n∏
i=1

PYi|pa(Yi), (3)

where pa(Yi) denotes the set of parent nodes of Yi in the
network. Tools for analyzing maximal leakage in the context of
Bayesian networks can be useful in extending the applications
of maximal leakage to more complex scenarios that involve
multiple steps of processing and iterative refinement based on
data, especially in the context of adaptive data analysis [8],
[9] and differential privacy [10]. In a simple chain-structured
Bayesian network, the leakage from one node to another can be
bounded by considering the conditional probabilities along the
path. However, analysis of more complex networks presents a
significant challenge. Notably, prior works, such as [10], [11],
have explored similar problems, but are limited to binary input
settings and rely on Dobrushin-type coupling techniques.

Main Contributions: In this work, we leverage recent de-
velopments in coupling characterizations of maximal leakage
[12]—known to hold for specific channels—to derive bounds
for Bayesian networks over finite alphabets. We establish
these bounds by constructing a simultaneous coupling for joint



probability mass functions (PMFs), which serves as a key
tool in our analysis. Additionally, we also provide a more
general condition under which such couplings are known to
exist by extending the characterization for the special case of
|X | = 4. Furthermore, we provide examples illustrating some
applications of our bounds.

A. Related Literature

Maximal leakage is a widely studied quantity in the study
of information leakage, with applications spanning information
theory [1], computer security [4], and machine learning [13].
The concept of leakage was first formalized in the context of
computer security. [14] defined leakage as the logarithm of the
multiplicative increase in the probability of correctly guessing
a random variable X upon observing Y . Building on this, [4]
introduced a worst-case version of this metric, maximizing it
over all prior distributions on X . A closed-form expression
for maximal leakage in the discrete case was derived in [1],
which also provided an analysis of its several variants and their
fundamental properties, and introduced a conditional version.

The concept of maximal leakage has since been generalized
to various forms that unify several leakage measures across
different applications. Maximal α-leakage, introduced by [15],
incorporates a parameter α that interpolates between mutual
information (α = 1) and maximal leakage (α = ∞). Similarly,
maximal (α, β)-leakage [16] unifies several leakage measures,
including local differential privacy and Rényi differential pri-
vacy. In privacy-related problems, pointwise maximal leakage
[5] quantifies leakage about a secret X via individual out-
comes. Other variants, such as g-leakage [17], [18], have been
proposed to address other scenarios, particularly in the context
of entropy-based bounds on leakage.

Maximal leakage has been widely applied in machine learn-
ing and adaptive data analysis. [6] used it to derive statistical
guarantees for both adaptive and non-adaptive settings. In
learning theory, maximal leakage has been used to analyze
the generalization error of iterative algorithms [13], [19].
[20] employed it to upper bound misclassification rates in
meta-universal coding strategies. Additionally, [21] examined
privacy-utility tradeoffs, using maximal leakage as a privacy
metric and as a performance metric in hypothesis testing.

A closely related work, [10], presents an adaptive composi-
tion theorem for the overall leakage L(X → (Y1, . . . , Yn)) in
a Bayesian network, expressed in terms of individual leakages
under the assumption of a binary input alphabet X . Their
approach employs Dobrushin-type coupling arguments and the
degradation properties of composite channels; however, the
analysis is confined to binary input spaces. Furthermore, the
bounds derived in this work align with established results on
contraction coefficients (cf. [22]–[26]) in Bayesian networks.
In particular, they correspond to the bounds formulated for
the contraction coefficients of Kullback-Leibler divergence
and total variation distance in [26], as well as for Doeblin
coefficients in [12], [27], [28].

II. BACKGROUND AND PRELIMINARIES

Let X,Y be random variables defined on finite alphabets
X = [n] ≜ {1, . . . , n} and Y respectively, and let PX,Y denote
joint PMF of X,Y . Without loss of generality, we will assume
that the marginal PX is such that PX(x) > 0 for all x ∈ X .
Let Pi ∈ PY (the probability simplex over Y) denote the
conditional PMF PY |X=i for i ∈ [n]. Consider a collection
of random variables Y1, . . . , Yn ∈ Y . A coupling of random
variables Y1, . . . , Yn distributed as P1, . . . , Pn, respectively,
is defined as a joint distribution PY1,...,Yn

that preserves the
marginals. For the channel PY |X =

[
PT
1 , . . . , PT

n

]T ∈ Rn×|Y|
sto

formed by stacking the PMFs P1, . . . , Pn ∈ PY , we in-
troduce a quantity called the leakage exponent denoted by
τmax(PY |X). This quantity, referred to as max-Doeblin in [12]
is defined as

τmax(PY |X) ≜
∑
y∈Y

max{P1(y), . . . , Pn(y)}. (4)

Under our assumption that PX(x) > 0 for all x ∈ X ,
τmax(PY |X) corresponds to the exponentiated maximal leak-
age exp(L(X → Y )) by (1). This equivalence motivates re-
ferring to τmax(PY |X) as the leakage exponent. We will inter-
changeably use the notation τmax(PY |X) = τmax(P1, . . . , Pn)
and similarly for related quantities.

Coupling-based Bound: Recently, [12] established a
coupling-based bound for the leakage exponent τmax(PY |X),
which is formally stated in the following proposition:

Proposition 1 (Minimal Coupling Bound for Leakage
Exponent [12, Theorem 4]). For any random variables
Y1, . . . , Yn ∈ Y distributed according to the PMFs
P1, . . . , Pn ∈ PY , respectively, we have

τmax(PY |X) ≤ min
PY1,...,Yn :

PY1
=P1, ... , PYn=Pn

∑
y∈Y

P(∪n
i=1{Yi = y}),

(5)
where the minimum is taken over all couplings of P1, . . . , Pn,
and P(·) denotes the probability law corresponding to the
coupling. Moreover, if

τmax2(PY |X) ≜
∑
y∈Y

max2{P1(y), . . . , Pn(y)} ≤ 1,

then equality in (5) holds, where max2{x1, . . . , xn} denotes
the second largest value among {x1, . . . , xn}.

The bound in (5) follows by the observation that for any
coupling P(·) we have∑
y∈Y

P(∪n
i=1{Yi = y})≥

∑
y∈Y

max{P1(y),P(∪n
i=2{Yi = y})},

≥
∑
y∈Y

max{P1(y), P2(y), . . . , Pn(y)}, (6)

where the first inequality follows since P(A ∪ B) ≥
max{P(A),P(B)} and that the coupling preserves marginals,
while the second inequality follows by recursively applying
the same argument. When the equality in (5) holds, this
result provides a coupling characterization for τmax(PY |X).



For n = 3, [12] showed that the condition τmax2
(PY |X) ≤ 1

is both sufficient and necessary, i.e., for n = 3 equality in (5)
if and only if τmax2

(PY |X) ≤ 1. However, for n ≥ 4, equality
in (5) may hold under more general conditions.

In this work, we primarily focus on channels satisfying
τmax2(PY |X) ≤ 1, ensuring that equality in (5) is satisfied.
For such channels, we leverage this coupling characterization
to derive bounds on maximal leakage in Bayesian networks.
Examples of such channel include the q-ary symmetric channel
Wδ with crossover probability δ, which satisfies τmax2

(Wδ) ≤
1 if δ ≤ 1 − 1/q, and the erasure channel Eϵ with erasure
probability ϵ, which always satisfies τmax2(Eϵ) ≤ 1. Further-
more, for n = 4, we establish relaxed conditions under which
equality in (5) holds, as detailed in Theorem 3.

III. SIMULTANEOUS COUPLING FOR MAXIMAL LEAKAGE

In this section, we establish a result on simultaneous cou-
plings for a finite collection of joint PMFs. Specifically, we
show that under the condition τmax2

(·) ≤ 1 applied to one
pair of marginal distributions, it is possible to construct a
joint coupling that is minimal with respect to that pair of
marginals. To formalize, consider m joint probability distri-
butions PX1,Y1

, PX2,Y2
, . . . , PXm,Ym

over X × Y , where the
random variables Xi ∈ X and Yi ∈ Y for i ∈ [m] are
defined on finite alphabets X and Y . Let the marginals of the
Yi’s be denoted by PY1

, PY2
, . . . , PYm

. Then, our simultaneous
coupling result is stated as follows:

Theorem 1 (Simultaneous Coupling). Given m joint
probability distributions PX1,Y1 , PX2,Y2 , . . . , PXm,Ym ,
assume that the marginals PY1 , PY2 , . . . , PYm satisfy
τmax2

(PY1
, PY2

, . . . , PYm
) ≤ 1. Then, there exists a coupling

PX1,Y1,X2,Y2,...,Xm,Ym
of PX1,Y1

, . . . , PXm,Ym
such that∑

y∈Y
P(∪m

i=1{Yi = y}) = τmax(PY1
, . . . , PYm

), (7)

where P(·) denotes the probability law under the coupling.

The proof of this theorem is provided in [29]. The con-
struction of the simultaneous coupling utilizes the mini-
mal coupling construction of PY1

, PY2
, . . . , PYm

while en-
suring that the marginals of the joint PMFs PXi,Yi

for all
i ∈ [m] are preserved. We further note that the condition
τmax2

(PY1
, PY2

, . . . , PYm
) ≤ 1 is both sufficient and necessary

for m = 3, as discussed in the proof. For larger values,
specifically m ≥ 4, we conjecture that this condition can
be further relaxed using a similar recipe for obtaining the
simultaneous coupling. In particular, for m = 4, the condition
can be relaxed to a more general condition as detailed in
Theorem 3 (although this condition may not be tight).

IV. BOUNDS OVER BAYESIAN NETWORKS

In this section, we establish bounds on maximal leakage
over Bayesian networks. Our objective is to establish upper
bounds on the leakage exponent of the composite channel from
a single source node to any sink node, based on the properties
of the individual channels (such as their leakage exponents) in

X

U

V

Fig. 1: Illustrative diagram of a Bayesian network. X is the
source node, nodes inside the dotted box belong to the set
V ⊂ V and U is the sink node.

the Bayesian network. A Bayesian network is a probabilistic
graphical model represented by a directed acyclic graph, where
each vertex corresponds to a random variable defined over a
finite alphabet. We assume that each variable (vertex) takes
values in a finite alphabet of arbitrary length.

Consider a Bayesian network with vertex set V and a source
node X taking values in X = [n]. Each vertex U , except
the source node, is associated with a conditional distribution
PU |pa(U), where pa(U) denotes the set of parents of U . These
conditional distributions together define the joint probability
distribution over the network as in (3) (cf. [7]). We assume
that the vertices in the network are topologically sorted.
Specifically, for any node U and any non-empty subset of
nodes V ⊆ V, we use the notation U > V to indicate that
there is no directed path from U to V . Let V ⊂ V be any
arbitrary non-empty subset of nodes, and suppose that the
random variables associated with V take values in V . Let U be
a sink node such that U > V in the topological ordering [7].
For clarity, we include an illustration of a Bayesian network
in Fig. 1.

The ensuing theorem provides bounds on the leakage expo-
nent over a Bayesian network based on the minimal coupling
and simultaneous coupling results presented in Proposition 1
and Theorem 1.

Theorem 2 (Bounds on Maximal Leakage in Bayesian Net-
works). Let V ⊆ V be a non-empty subset of nodes and let
U ∈ V be any node in V such that U > V . Assume that the
conditional distributions satisfy

τmax2(PU |pa(U)) ≤ 1 and τmax2(PV |X) ≤ 1.

Let the quantity f(PV ∪pa(U)|X) be defined as

f(PV ∪pa(U)|X) ≜
∑
v∈V

P
(
Z1 = · · · = Zn,

n⋃
j=1

{Vj = v}
)
,

where Zi ∼ Ppa(U)|X=i, Vi ∼ PV |X=i, and P(·) is the
probability law with respect to the simultaneous coupling
of PV1,Z1

, . . . , PVn,Zn
(in Theorem 1). Then, the leakage



exponent of the composite channel PV ∪{U}|X satisfies the
following bound:

τmax(PV ∪{U}|X) ≤ τmax(PU |pa(U)) · τmax(PV |X)

−
(
τmax(PU |pa(U))− 1

)
· f(PV ∪pa(U)|X).

Proof Sketch. We provide a proof sketch here and leave sev-
eral details to [29]. Let Z = pa(U) and let its alphabet set be
denoted by Z . Let Qi denote the conditional distribution of
V,Z given X = i, i.e., Qi = PV,Z|X=i for i ∈ [n]. Further,
we define the random variables (Vi, Zi) ∼ Qi for i ∈ [n].
Since τmax2

(PV |X) ≤ 1, and as explained in [29], there
exists a simultaneous coupling PV1,Z1,...,Vn,Zn

of joint PMFs
Q1, . . . , Qn. Let P(·) denote the corresponding probability
operator under the simultaneous coupling, and we have that∑

v∈V
P(∪n

i=1{Vi = v}) = τmax

(
PV |X

)
.

Conditioned on Z1 = z1, . . . , Zn = zn for z1, . . . , zn ∈ Z ,
define the random variables Ui ∼ PU |Z=zi . We now
construct a minimal coupling of conditional PMFs
PU |Z=z1 , . . . , PU |Z=zn , and let the random variables
(U1, U2, . . . , Un) be distributed according to this coupling
(conditioned on Z1 = z1, . . . , Zn = zn). Then, the minimal
coupling of V1, Z1, V2, Z2, . . . , Vn, Zn (earlier) along with
the minimal coupling of U1, U2, . . . , Un define the joint
distribution PV1,U1,Z1,...,Vn,Zn,Un

, which satisfies the Markov
relation

(V1, V2, . . . , Vn) −→ (Z1, Z2, . . . , Zn) −→ (U1, U2, . . . , Un).

Also, by our assumption τmax2
(PU |Z) ≤ 1, we have∑

u∈U
P(∪n

i=1{Ui = u} | Z1 = z1, . . . , Zn = zn)− 1

= τmax

(
PU |Z=z1 , . . . , PU |Z=zn

)
− 1

≤
(
τmax

(
PU |Z

)
− 1

)
1{z1=···=zn}c ,

where 1A denotes the indicator function of A, Bc denotes
the complement of the set B, and the inequality holds since
the alphabet Z may be larger than {z1, . . . , zn} and the two
bounds are equal when {z1 = · · · = zn} occurs. Now, for
any fixed v taking expectation conditioned on the set Av =
{∪n

j=1{Vj = v}} on both sides, gives∑
u∈U

E[P(∪n
i=1{Ui = u}|Z1 = z1, . . . , Zn = zn)|Av]− 1

≤ (τmax

(
PU |Z

)
− 1)P({Z1 = · · · = Zn}c|Av),

which simplifies to∑
u∈U

P(∪n
i=1{Ui = u}|Av)− 1

≤ (τmax

(
PU |Z

)
− 1)(1− P({Z1 = · · · = Zn}|Av)).

Now, multiplying both sides by P
(
∪n
j=1{Vj = v}

)
gives∑

u∈U
P
(
∪n
i=1{Ui = u},∪n

j=1{Vj = v}
)
− P

(
∪n
j=1{Vj = v}

)
≤

(
τmax

(
PU |Z

)
− 1

)
(P(∪n

j=1{Vj = v})−

P(Z1 = · · · = Zn,∪n
j=1{Vj = v})). (8)

Now observe that∑
v∈V

∑
u∈U

P
(
∪n
i=1{Ui = u},∪n

j=1{Vj = v}
)
≥∑

v∈V

∑
u∈U

P(∪n
i=1{Ui = u, Vi = v}) ≥ τmax(PU,V |X)

Finally, taking the sum over all v ∈ V on both sides of (8)
and utilizing the above bound and the construction of the
simultaneously maximal coupling, we have

τmax

(
PV,U |X

)
≤ τmax

(
PV |X

)
+ (τmax(PU |Z)− 1)×(

τmax

(
PV |X

)
−

∑
v∈V

P(Z1 = · · · = Zn,∪n
j=1{Vj = v})

)
.

Using the definition of f(·) yields the desired result.

The theorem highlights that we can iteratively “peel off”
a node (or sets of nodes) in the Bayesian network to obtain
an upper bound on the leakage exponent of the composite
channel. (Note that when the graph is sparser, the number
of recursive steps needed is smaller, which can imply tighter
bounds.) The existence of a simultaneous coupling for the joint
PMFs PV1,Z1 , . . . , PVn,Zn is central to our approach and is
guaranteed by the assumption τmax2

(PV |X) ≤ 1. While the
condition may appear restrictive, it arises from the lack of a
general characterization when couplings achieving equality in
(5) and (7) exist for a given set of PMFs. Importantly, the proof
of Theorem 2 does not rely on the structure of the coupling
but only on its existence and that it achieves the bound in (5).
Furthermore, the last term f(PV ∪pa(U)|X) quantifies the “loss
in leakage” when the parents Z1, . . . , Zn of U all become
equal (conditioned on X). We can utilize the structure of the
simultaneous coupling construction presented in Theorem 1 to
obtain a simplified bound in terms of the Doeblin coefficient
as presented below.

Corollary 1 (Simplified Bounds on Leakage Exponent). Con-
sider the setting in Theorem 2 and assume that the conditional
distributions satisfy τmax2

(PU |pa(U)) ≤ 1 and τmax2
(PV |X) ≤

1. Then, the leakage exponent of the composite channel
PV ∪{U}|X satisfies the following bound:

τmax(PV ∪{U}|X) ≤ τmax(PU |pa(U)) · τmax(PV |X)

−
(
τmax(PU |pa(U))− 1

)
· τ(PV ∪pa(U)|X),

where τ(PY |X) is the Doeblin coefficient of the channel PY |X ,
defined as

τ(PY |X) ≜
∑
y∈Y

min
x∈X

PY |X(y|x).

This corollary is a consequence of the structure of our
simultaneous coupling in Theorem 1. The resulting bound
depends on the Doeblin coefficient of the composite channel
τ(PV ∪pa(U)|X), which can be lower bounded by using the
Doeblin coefficient of the individual channels as demonstrated
in [12, Theorem 6]. Consequently, our bound in Corollary 1
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Fig. 2: Examples of Bayesian networks.

parallels existing bounds on Bayesian networks for contrac-
tion coefficients of the Kullback-Leibler divergence and total
variation distance established in [26], as well as for Doeblin
coefficients in [12], [27].

A. Application of Bounds to Simple Bayesian Networks
We will now apply the bounds established in Corollary 1

to different examples of Bayesian networks to illustrate their
effectiveness.

Example 1: Consider the Bayesian network shown in
Fig. 2a. Using Corollary 1 under the assumption that
τmax2

(PY2|Z) ≤ 1 and τmax2
(PY1|X) ≤ 1, the bound on

maximal leakage is given by:

τmax(PY1,Y2|X) ≤ τmax(PY2|Z)τmax(PY1|X)

−
(
τmax(PY2|Z)− 1

)
τ(PY1,Z|X).

(9)

Taking the logarithm on both sides, we obtain
L(X → (Y1, Y2)) ≤ L(X → Y1) + L(Z → Y2)

+ log

(
1−

(τmax(PY2|Z)− 1)

τmax(PY2|Z)

τ(PY1,Z|X)

τmax(PY1|Z)

)
.

(10)

Observe that when the Doeblin coefficient τ(PY1,Z|X) > 0, the
bound in (10) improves upon the sub-additivity property in [1].
Intuitively, the improvement arises because the bound accounts
for the reduction in leakage due to the “erasure of information
by the Doeblin component” [30], which is precisely what our
proof technique for Theorem 2 aims to capture. Furthermore,
this bound can be applied recursively, provided the required
assumptions hold at each step.

Example 2: Applying Corollary 1 to the Bayesian network
in Fig. 2b, we obtain the bound

τmax(P(Y1,Y2,Y3)|X) ≤ τmax(P(Y1,Y2)|X) · τmax(PY3|(Y1,Y2))

− (τmax(PY3|(Y1,Y2))− 1) · τ(P(Y1,Y2)|X), (11)

under the assumption that τmax2
(PY3|(Y1,Y2)) ≤ 1 and

τmax2
(P(Y1,Y2)|X) ≤ 1. Applying Corollary 1, we can further

bound τmax(P(Y1,Y2)|X) as

τmax(P(Y1,Y2)|X) ≤ τmax(PY1|X)τmax(PY2|(X,Y1)), (12)

assuming τmax2
(PY1|X) ≤ 1 and τmax2

(PY2|(X,Y1)) ≤ 1.

V. MINIMAL COUPLING CONSTRUCTION FOR LEAKAGE
EXPONENT FOR n = 4

In this section, we extend the known conditions beyond
τmax2

(PY |X) ≤ 1 under which the coupling achieves the
lower bound in (5) exists for the special case of n = 4, where
n = |X |. Subsequently, we employ this coupling construction
to directly extend the previously presented results.

Theorem 3 (Coupling Construction for n = 4). For n = 4,
let P1, P2, P3, P4 ∈ PY be the given PMFs. For i ̸= j and
i, j ∈ [4], let Pmin(y) = min{P1(y), P2(y), P3(y), P4(y)}
and define Nij as

Nij ≜
∑
y∈Y

(
min{Pi(y), Pj(y)}−

∑
k∈[4]\{i,j}

min{Pi(y), Pj(y), Pk(y)}+ Pmin(y)

)
.

Then, there exists a coupling for n = 4 that achieves the lower
bound in (5), provided the following condition holds:

min{N12, N34}+min{N13, N24}+min{N14, N23}
≥ τmax2(P1, P2, P3, P4)− 1. (13)

The construction of the coupling is presented in [29].
Notably, the quantities Nij are non-negative, and therefore,
the condition (13) encompasses the condition τmax2

(·) ≤ 1.
The condition (13) arises after solving a system of linear
equations while at the same time ensuring the non-negative
of the solution. The system of linear equations has been
constructed such that the coupling preserves the marginals
while at the same time achieving the lower bound in (5). We
remark that there indeed exist PMFs that satisfy the condition
in (13) (see [29] for an example). Moreover, we can construct
a simultaneous coupling of PX1,Y1 , . . . , PX4,Y4 provided that
marginals PY1 , . . . , PY4 satisfy the condition in (13). This
allows us to directly extend the results in Theorems 1 and 2
to beyond τmax2

(PY |X) ≤ 1 for n = 4.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we investigated the behavior of maximal leak-
age over Bayesian networks on finite alphabets, establishing
bounds using minimal coupling characterizations of leakage
exponents and a new simultaneous coupling result. We also
provided a more general condition under which the coupling
characterizations held for |X | = 4 and demonstrated the
effectiveness of our bounds through examples.

Our work also opens up several avenues for future research.
With some modifications, we believe that our framework can
be generalized to related notions of maximal leakage, such as
pointwise maximal leakage [5], as our coupling constructions
achieve equality in (6) for every y ∈ Y . Secondly, relaxing the
condition τmax2

(PY |X) ≤ 1 could lead to broader applicability
of our results. Moreover, characterizing channels for which a
minimal coupling achieves the bound in (5) remains an open
problem. Finally, we believe that bounding the gap between
the two terms in (5) could enable the extension of our bounds
to general channels.
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